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SUMMARY:

Studies of social networks provide unique opportunities to assess the causal effects of 

interventions that may impact more of the population than just those intervened on directly. Such 

effects are sometimes called peer or spillover effects, and may exist in the presence of interference, 

i.e., when one individual’s treatment affects another individual’s outcome. Randomization-based 

inference (RI) methods provide a theoretical basis for causal inference in randomized studies, 

even in the presence of interference. In this article, we consider RI of the intervention effect 

in the eX-FLU trial, a randomized study designed to assess the effect of a social distancing 

intervention on influenza-like-illness transmission in a connected network of college students. 

The approach considered enables inference about the effect of the social distancing intervention 

on the per-contact probability of influenza-like-illness transmission in the observed network. The 

methods allow for interference between connected individuals and for heterogeneous treatment 

effects. The proposed methods are evaluated empirically via simulation studies, and then applied 

to data from the eX-FLU trial.
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1. Introduction

The novel coronavirus disease 2019 (COVID-19) can be spread through person-to-person 

contacts (Paules et al., 2020). Social distancing after symptom onset has been shown to be 

effective in preventing transmission of similar human coronavirus strains, including severe 
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acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) (Peak et 

al., 2017). Therefore, public health efforts to control the spread of COVID-19 have included 

isolation of individuals who exhibit symptoms (Nussbaumer-Streit et al., 2020). Given that 

individuals may be infectious before symptom onset and that isolation of one individual can 

lower the chances of infection for everyone with whom that individual would have otherwise 

had contact, how can the efficacy of social distancing interventions be measured?

This question is not unique to the study of coronavirus. Public health interventions are often 

designed to disseminate benefits to more of the population than is treated directly (Clemens 

et al., 2011; Klugman, 2014). This dissemination effect, called the spillover or peer effect, 

is an important component of the population-level effect of an intervention (Clemens 

et al., 2011; Halloran and Hudgens, 2012). Randomized trials conducted within social 

networks can provide information about the spillover effect by randomly administering 

the intervention to individuals within the network (Eckles et al., 2017). However, network-

based trials require careful consideration when drawing inference about the effects of the 

intervention.

As a motivating example, consider the eX-FLU trial (Aiello et al., 2016), which followed 

a sample of college students during influenza season to evaluate the efficacy of a social 

distancing intervention for the prevention of influenza-like-illness (ILI) transmission. 

Enrollment in the eX-FLU trial relied on respondent-driven sampling (RDS) to ensure the 

study sample contained connected networks of individuals. A respondent-driven sample 

is formed by a chain-referral procedure in which seed individuals are selected from the 

target population and then provided with tokens to nominate other members of the target 

population (Goel et al., 2010). This process continues until the desired sample size is 

reached.

In general, RDS samples will be non-representative of the target population and will 

exhibit dependence among individuals in the sample (Goel et al., 2010). This dependence 

may introduce interference. Interference occurs if the intervention status of one person 

affects another person’s outcome (Cox, 1958; Rosenbaum, 2007). Non-random sampling, 

dependence, and interference all pose inferential challenges. For instance, large-sample 

frequentist methods typically assume random sampling from the target population (i.e., 

observations are independent and identically distributed), and therefore would not generally 

produce valid inference in settings such as the eX-FLU trial.

Many of the existing methods for causal inference in the presence of interference assume 

either that interference is restricted to disjoint subgroups (Sobel, 2006; Hudgens and 

Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012) or that the network is a 

random draw from the super-population (Liu et al., 2016; Ogburn et al., 2017; Ogburn and 

Vanderweele, 2017; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021). In settings such 

as the eX-FLU trial where such assumptions are dubious, randomization-based inference 

(RI) provides a natural approach to assessing intervention effects (Aronow and Samii, 2017; 

Athey and Imbens, 2017; Basse et al., 2019; Wu and Ding, 2020). Such an approach is 

considered in this paper for analysis of the eX-FLU data. The proposed approach makes 
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no asymptotic assumptions and allows for inference about the effect of intervention on ILI 

transmission in the observed network.

The outline of the remainder of this paper is as follows. Section 2 provides additional details 

about the eX-FLU trial and describes RI methods for inference about the effect of a social 

distancing intervention. The proposed approach allows for interference between connected 

individuals and for heterogeneous treatment effects. Section 3 presents simulation studies 

evaluating the methods under a variety of scenarios. Data from the eX-FLU trial is analyzed 

in Section 4, and some concluding remarks are given in Section 5.

2. Methods

2.1 Introduction to the eX-FLU trial and notation

The eX-FLU trial was designed to study the efficacy of a three-day social distancing 

intervention for prevention of ILI transmission in a network of students at a large university. 

Social distancing (isolation) aims to reduce contact between individuals in an effort to limit 

opportunities for disease transmission. The eX-FLU experiment followed the students over 

a ten-week period during an influenza season to track ILI transmission (Aiello et al., 2016). 

Of the 5536 eligible students, 590 of those identified through the RDS process elected to 

participate in the trial. Upon meeting the case definition for ILI, a student in the intervention 

group was encouraged to self-isolate in their dorm room for three days while receiving 

food and services from the eX-FLU staff. ILI symptoms were self-reported and confirmed 

with laboratory testing for influenza and other respiratory illnesses (Aiello et al., 2016). The 

eX-FLU study design is detailed below and notation is defined generally for any study of 

similar design.

Consider an experiment such as eX-FLU, conducted on n individuals who formed a network 

of face-to-face social contacts. In the following, random variables are denoted by uppercase 

letters and fixed quantities are denoted by lowercase letters. Suppose individuals were 

randomly assigned to intervention or control at baseline (i.e., the beginning of the trial). 

Assume the randomization assignment did not depend on the social network structure, risk 

of developing ILI, or any other individual characteristics. For i ∈ {1, …, n}, let Ai equal 

1 if individual i was assigned to the intervention group and 0 if individual i was assigned 

to the control condition. Let A = (A1, …, An) represent the vector of observed intervention 

assignments. Let A denote the set of all possible intervention assignment vectors a = 

(a1, …, an) given the randomization design. For example, eX-FLU employed a cluster 

randomized design, in which clusters (or groups) of students were defined by subdivisions 

of student residence halls, and each cluster of individuals was randomly assigned to the 

intervention or control condition. By design, exactly m of the h clusters were assigned to the 

intervention, such that A is composed of the 
ℎ
m  possible assignment vectors where ai = aj 

for all individuals i and j in the same cluster. For simplicity, assume each assignment in A
occurs with equal probability, although this assumption can easily be relaxed. For eX-FLU, 

P(A = a) = ℎ
m

−1
 for all a ∈ A.
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Suppose the study participants were then followed for τ discrete time points. During 

followup, information was collected on a binary outcome of interest, e.g., ILI status. Let 

Yit denote the observed outcome for individual i at time t ∈ {1, …, τ}. Further, let Yt = 

(Y1t, …, Ynt) be the observed outcomes for all n individuals at time t. In some studies, the 

outcome may be collected at baseline. Denote the baseline outcome for individual i by yi0. 

In eX-FLU, 25 individuals had ILI at baseline (13 cases in the intervention group).

The eX-FLU intervention was not intended to prevent ILI in the person assigned to the 

intervention; instead, this study investigated the spillover effect of social distancing on 

at-risk peers. Therefore, information on social contacts between study participants was also 

collected at each of the τ time points. Self-reported contact information was collected for 

each individual via weekly questionnaires, and additional contact information was collected 

through residence hall and course rosters. In the analysis presented below, individuals i and 

j are considered contacts at time t, denoted by binary indicator eijt = 1, if either individuals 

i or j (or both) had contact during weeks t−1 or t; otherwise eijt = 0. Contacts are assumed 

to be symmetric (i.e., eijt = ejit for all i, j, t) and by convention eiit = 0 for all i and t. 
The eX-FLU social contact network is represented graphically in Figure 1, where an edge 

between two nodes indicates that the two individuals reported contact in at least one week of 

the study, i.e., maxt∈{0,…,τ} eijt = 1 for individuals i and j.

2.2 Potential outcomes with interference

Effects of the intervention can be represented by comparisons of potential outcomes 

(Neyman, 1923; Rubin, 2005). Let yit(a) denote the potential outcome that would have 

been observed for person i at time t if, possibly counter to fact, assignment a had been 

chosen. To begin, potential outcomes are assumed to be fixed, i.e., deterministic functions of 

a. In Section 2.4 below, this assumption will be relaxed by allowing potential outcomes to 

be stochastic. Note that the notation yit(a) allows for interference to be completely general, 

i.e., the outcome of individual i may depend on the intervention assignment of any other 

individual. Therefore, in eX-FLU each individual has 
ℎ
m  potential outcomes. By the causal 

consistency assumption (Cole and Frangakis, 2009), one of these potential outcomes yit(A) 

= Yit is observed and the remaining become counterfactual.

Inference about intervention effects generally requires some assumptions about the 

structure of the interference (Sävje et al., 2021). The commonly employed Stable Unit 

Treatment Value Assumption (SUTVA) supposes that there is no interference between units 

(Rubin, 1980). In the presence of interference, SUTVA is violated and other assumptions 

about the interference structure are needed for valid inference. The partial interference 

assumption posits that individuals can be partitioned into clusters such that there is no 

interference between clusters (Sobel, 2006). Even though individuals in the eX-FLU sample 

were assigned to intervention via cluster randomization, self-reported contacts between 

participants from different clusters suggests the partial interference assumption likely does 

not hold for this trial. Instead, the methods below rely on a weaker assumption that allows 

interference to occur between any two individuals who recently had contact. Specifically, 
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it is only assumed that there is not interference between individuals who have not had any 

recent contact.

2.3 Randomization-based tests

Randomization-based tests permit inference about experiments based on the exact (i.e., 

finite sample) distribution of a given test statistic under a specific hypothesis about the 

intervention effect (Rosenbaum, 2002a; Rosenberger et al., 2019). An RI test entails a null 

hypothesis H0, a test statistic T(a), and a method for determining the distribution of the test 

statistic under H0. In addition to being a function of the randomization vector a, the test 

statistic T(a) is also a function of the observed data, which is left implicit for notational 

simplicity. The RI tests in this section consider the sharp null hypothesis of no intervention 

effect given by H0 : yit(a) − yit(a′) = 0 for all i ∈ {1, …, n} and a, a′ ∈ A (Fisher, 1935). 

Rejecting this null hypothesis suggests that there is some intervention effect for at least one 

individual in the sample. Under H0, yit(a) = Yit for all a ∈ A, which allows all unobserved 

potential outcomes yit(a) to be inferred from the observed data. The sharp null hypothesis is 

assessed by comparing the test statistic for the observed assignment, T(A), to the distribution 

of test statistics for all possible treatment assignments under hypothesis H0. Assuming 

values of the test statistic far from zero provide evidence against the null hypothesis, the 

two-sided p-value, ρT(A) = ∑a ∈ A I( |T (A) | ≤ |T (a) | )/ |A|, is the proportion of the sampling 

distribution that is as or more extreme than the observed test statistic, where I(·) is the 

indicator function and for notational convenience | · | denotes either the absolute value of a 

number or the cardinality of a set. In settings where enumerating all possible elements of A
is computationally prohibitive, Monte Carlo sampling can be used to approximate p-values 

(Rosenberger et al., 2019; Wang and Rosenberger, 2020; Wang et al., 2020).

An RI test can assess the presence of an intervention effect without any structural 

assumptions about the effect. Different possible test statistics are considered below. For 

example, the test statistic may equal an estimator of the average intervention effect under 

some working model. However, the validity of the RI framework for hypothesis testing 

does not rely on correct specification of the working model; that is, type I error control is 

guaranteed under the null even if the working model is mis-specified (Loh et al., 2020).

For instance, the test statistic could be based on the maximum likelihood estimator (MLE) 

of the parameters of a logistic regression model. One such working model is logit{E(Yit)} = 

β0+β1(Σj eij,t−1Aj)/(Σj eij,t−1), for t ∈ {1, …, τ}. The parameter β1 in this model quantifies 

the effect on the outcome at time t of the proportion of contacts at t − 1 assigned to the 

intervention. In the eX-FLU trial, ILI status of peers at the previous time point is likely 

a relevant component of the intervention effect. Thus, another possible working model is 

logit{E(Yit)} = γ0+γ1(Σj eij,t−1Yj,t−1Aj)/(Σj eij,t−1Yj,t−1), where γ1 quantifies the effect of 

contacts with ILI being assigned to the intervention. These models can be used to calculate 

the Wald test statistics T1(A) = β 1/seβ1 and T2(A) = γ 1/seγ1, where β 1 and γ 1 are the MLEs of β1 

and γ1 respectively under the working logit model, seβ1 is the estimated standard error of β 1

using the observed information, and seγ1 is defined analogously. In their respective models, 

β1 and γ1 are zero if there is no effect.
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The test statistic could also be based on an estimator for the average difference in the 

number of ILI infections that could be attributed to individuals in the intervention and 

control groups. Let Wit = (Σj eijtYjt)/(Σj eijt) be the proportion of person i’s contacts at time 

t who have ILI. The average difference in these proportions by intervention assignment is 

T3(A) = (Σj,t WjtAj)/(Σj,t Aj)−{Σj,t Wjt(1−Aj)}/{Σj,t(1−Aj)}, where Σj,t denotes ∑j = 1
n ∑t = 1

τ . 

An analogous test statistic that accounts for which individuals reported ILI at the previous 

time point is T4(A) = (Σj,t WjtAjYj,t−1)/(Σj,t AjYj,t−1) − {Σj,t Wjt(1 − Aj)Yj,t−1}/{Σj,t(1 

− Aj)Yj,t−1}. Since statistics T1 and T3 use information from all participants, regardless 

of ILI status, these statistics may capture transmission from asymptomatic or unreported 

cases. However, asymptomatic individuals in the intervention group were not encouraged 

to socially distance themselves, suggesting T1 and T3 may have diminished power. On the 

other hand, statistics T2 and T4 utilize information from ILI cases to measure the effect of 

the intervention in contacts of individuals known to have ILI.

For longitudinal studies, the intervention effect can be assessed by considering all available 

time points simultaneously, as in the test statistics above. Alternatively, a pairwise analysis 

may be conducted that separately investigates each pair of consecutive time points. A 

pairwise approach may be preferred if the intervention effect changes over time. While the 

test statistics defined above incorporate information from all τ time points, analogous test 

statistics can be defined for a pairwise analysis.

2.4 Stochastic potential outcomes model

Randomization tests of the sharp null hypothesis provide information about the presence of 

an intervention effect, but do not provide information about the magnitude of such an effect. 

Point estimates and confidence intervals (CIs) of the intervention effect may also be desired. 

In the absence of interference, a common approach to constructing CIs entails inverting 

randomization tests. This approach typically relies on a constant treatment effect assumption 

(Wang and Rosenberger, 2020). For example, if each individual has two potential outcomes 

yi(0) and yi(1), then the additive treatment effect assumption supposes yi(0) = yi(1)+τ for all 

i and some fixed constant τ. Unfortunately, such treatment effect homogeneity assumptions 

are often unrealistic in many settings, especially when the outcome is binary and in the 

presence of interference (Rosenbaum, 2002a; Rigdon and Hudgens, 2015). Therefore, in this 

section, a stochastic potential outcomes model is considered that allows for heterogeneous 

treatment effects without assuming a constant treatment effect. Such a model will be used 

in the eX-FLU analysis in Section 4 to construct point estimates and CIs of the effect of the 

intervention on the risk of ILI transmission between social contacts.

Unlike the deterministic potential outcome model in Sections 2.2 and 2.3, here potential 

outcomes are considered stochastic (Robins, 1988; Robins and Greenland, 1989). In 

particular, the potential outcome for individual i at time t for assignment vector a may 

now vary probabilistically and is denoted by the random variable Yit(a), which may follow 

a distribution specific to each individual at each time point. Motivated by the eX-FLU trial, 

these stochastic potential outcomes are assumed to follow an ILI transmission probability 

model described below. The intervention effect is quantified by the model parameters, and 
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RI tests of non-sharp null hypotheses about the parameters are utilized to construct point 

estimates and CIs for the effect.

The stochastic potential outcome model is parameterized by ILI transmission probabilities 

from sources inside and outside of the observed network. Let p1 denote the per-contact 

probability of ILI transmission from an individual assigned to the social distancing 

intervention to another individual. Similarly, define p0 as the per-contact transmission 

probability from an individual not assigned to the intervention. Additionally, let ϵ represent 

the probability of transmission from outside of the observed network at each time point. The 

inclusion of ϵ in the model allows for the possibility that some eX-FLU participants may 

have been infected from individuals outside of the observed study network. Let θ = (p0, p1, 

ϵ) with corresponding parameter space Θ = {θ : (p0, p1, ϵ) ∈ [0, 1]3}.

The transmission probability model can be tailored to the study design and subject matter 

knowledge. For instance, the model can incorporate dynamics specific to transmission of the 

outcome under study, such as pathogen-specific latency or infectious periods. Since ILI is 

caused by multiple viruses rather than a single pathogen, the transmission probability model 

used in the eX-FLU analysis assumes that individuals remain susceptible to ILI even after 

previous infections. Therefore, individuals with ILI at week t − 1 are considered eligible to 

get ILI anew in week t. In settings in which infection is known to confer immunity for some 

period of time, changes in susceptibility could be encoded into the model. Additionally, 

transmission is assumed to occur only between direct contacts.

The per-contact probability of transmission depends on multiple factors, including the social 

contact network, ILI status, and intervention assignment. Let Bijt be the (unobserved) 

indicator of whether person i develops ILI at time t as a result of contact with person j. 
Assume P(Bijt = 1) = πijt(a) where πijt(a) = Yj,t−1(a)eij,t−1{ajp1 +(1−aj)p0}. Note that if 

individual j does not have ILI or individuals i and j are not social contacts at time t−1, then 

the probability that person j transmits ILI to person i is zero. Let Oit be the (unobserved) 

indicator that person i is infected from an individual outside of the observed network at time 

t, such that P(Oit = 1) = ϵ.

Only one individual needs to successfully transmit ILI to individual i for person i to 

become infected, implying Yit(a) = max{Bi1t, …, Bint, Oit}. Assume Bi1t,…, Bint and Oit are 

mutually independent given the outcomes at the previous time point, such that

P Y it(a) = 1 ∣ Y 1, t − 1(a), …, Y n, t − 1(a) = rit(a), (1)

where rit(a) = 1 − (1 − ϵ)∏j = 1
n 1 − πijt(a) . Then the parameters θ can be estimated by 

maximum likelihood estimation, using the log likelihood function

l(θ) = ∑
t = 1

τ
∑
i = 1

n
Y itlog rit(A) + 1 − Y it log 1 − rit(A) , (2)
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under the Markov-type assumption that Yt ⫫ {Yt−2, …, Y1}|Yt−1 for all t ∈ {3, …, τ}. The 

MLE of θ does not appear to have a closed form, and therefore numerical optimization is 

used to find estimates θ = p0, p1, ϵ  that maximize (2).

Confidence regions for θ may be constructed by inverting an RI test of H0 : θ = 

θ* for θ* = p0
*, p1

*, ϵ* ∈ Θ. The probability model parameters can be utilized in a test 

statistic that includes information from observed data as well as the hypothesis under 

consideration, such as T5 a, θ* = ‖θ − θ*‖2
2
 where ∥·∥2 denotes the Euclidean norm. Since 

this H0 is not a sharp hypothesis due to the randomness of the potential outcomes, the 

sampling distribution of the test statistic can no longer be constructed through enumeration 

for each a ∈ A. Instead, the sampling distribution is approximated as follows. First, a 

random sample of intervention assignments a is drawn from A; denote this sample As. 

Then for each a ∈ As, longitudinal ILI outcomes are stochastically generated according 

to (1) under the null H0 : θ = θ*, and the test statistic T5 is evaluated. Then, the 

p-value ρT5 A, θ* = ∑a ∈ As I T5 A, θ* ≤ T5 a, θ* / As  is computed. Repeating this hypothesis 

testing process for all values of θ* ∈ Θ, a (1 − α) confidence region for θ is then 

Cθ = θ* ∈ Θ:ρT5 A, θ* > α .

The intervention effect can be defined by a contrast of transmission probabilities; the per-

contact risk difference δθ = p1 − p0 is the focus below. A point estimate for δθ based on 

the MLE for θ is δθ = p1 − p0, and a (1 − α) confidence region for δθ is Cδ = δθ*:θ* ∈ Cθ . 

The minimum and maximum values of Cδ form a (1 − α) CI for δθ. Determining the 

endpoints of this CI may be computationally challenging in practice. A computationally 

efficient stochastic search procedure for approximating the CI endpoints is described in the 

Appendix.

3. Empirical Results

3.1 Simulation study

The RI inferential methods presented above were evaluated via simulations designed to 

emulate the eX-FLU trial. Baseline networks were simulated with two different network 

models: an exponential random graph model (ERGM), and a scale-free model that allows 

for highly connected individuals or super-spreaders (Keeling and Eames, 2005). Simulation 

results from each model are provided separately below. To generate temporal variation in the 

network, one percent of contacts at time t−1 were randomly chosen to be non-contacts at 

time t, and one percent of non-contacts at time t−1 were randomly chosen to be contacts at 

time t for t ∈ {1, …, τ}.

To emulate the cluster randomization design of eX-FLU, each of n = 504 individuals 

was assigned to one of h = 112 clusters with roughly equal numbers of individuals per 

cluster. The intervention was assigned to m = 56 of these h clusters, resulting in a total 

of 
112
56 ≈ 4 × 1032 possible intervention assignments. Baseline ILI status, yi0, was assigned 

such that 25 of the n individuals had ILI at time 0. Outcomes were sequentially generated 

according to (1), i.e., Yit for i ∈ {1, …, n} and t ∈ {1, …, τ} was sampled from a Bernoulli 
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distribution with mean rit(A). Power of hypothesis tests, coverage of CIs, and bias of point 

estimates were computed for data simulated under various combinations of p0, p1, and ϵ.

R code for these simulations is available at github.com/shaina-alexandria/netrix.

3.2 Power of RI tests

The test statistics from Section 2.3 were evaluated empirically for power to detect the 

intervention effect δθ for values of θ in a region of Θ considered plausible for the eX-FLU 

trial. For each value of θ, 500 data sets were simulated. The power of each test was 

approximated by the proportion of datasets where the RI test p-values were less than or 

equal to α = 0.05. For each hypothesis test, the sampling distributions of the test statistics 

were approximated via 1000 randomly chosen a ∈ A.

Power results are shown in Figure 2 for the scale-free model and different values of θ. The 

ERGM network power results were similar, and are provided in Web Figure 1. Statistics T2 

and T4 were more powerful than T1 and T3, demonstrating that contacts without ILI at the 

previous time period were not informative about the intervention effect. Test statistics T2 and 

T1 also tended to be more powerful than T4 and T3, respectively, suggesting that utilizing a 

working logistic model may be preferable for assessing intervention effects in settings such 

as eX-FLU. All four statistics demonstrate type 1 error control, as is guaranteed by RI.

On the other hand, type 1 error control would not be expected in this setting if instead 

standard methods were employed that assume the observations are independently and 

identically distributed. To illustrate, the scale-free model simulations described above were 

repeated under the null hypothesis δθ = 0. For each simulated data set, whether to reject 

the null was determined by naively assuming the Wald statistics T1 and T2 follow standard 

Normal distributions. The results in Web Table 1 show that such a naive approach does 

not control the type 1 error, unlike the RI tests. Similar results were obtained when the 

simulations above were repeated using an ERGM network; see Web Table 2.

3.3 Coverage of confidence regions and bias

For the transmission probability model in Section 2.4, simulations were conducted to 

evaluate coverage of the 95% confidence regions for θ and confidence intervals for δθ 
under various combinations of the true data generating parameter θ. Separate simulations 

were conducted for each of the two network generation models. Confidence regions for θ 
were evaluated over a broad range of values in Θ to assess coverage for both plausible 

and extreme values of θ. Results for the ERGM network model in Web Figure 2 show the 

empirical coverage was generally close to the nominal level over the range of parameter 

values considered; results (not shown) for the scale-free model were similar.

Empirical coverage of the CI for δθ and bias of the estimator δθ were also evaluated for 

values of θ considered plausible in the eX-FLU trial. Separate simulation studies were 

conducted for the two network models. Power of the randomization test using statistic T5 

to reject the hypothesis H0 : δθ = 0 was also evaluated. Results are presented in Web Table 

3. For the scale-free model, the 95% CIs tended to have at least nominal coverage and δθ

had small empirical bias. The test statistic T5 had moderate power for θ values with larger 
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|δθ| and controlled type 1 error, although power decreased as ϵ increased. Results from the 

ERGM model were similar.

4. The Spillover Effect of Social Distancing

In this section, data from the eX-FLU study is used to illustrate how the methods presented 

above can be used to draw inference about the effect of the social distancing intervention 

in the observed network of students. Baseline ILI information was collected in the initial 

week of the study, after randomization but before the intervention could plausibly spillover 

to others. Over the ten-week study period (τ = 9), the eX-FLU trial captured three types 

of social contacts. Housing rosters provided roommate information, course rosters provided 

classmate information, and weekly questionnaires recorded self-reported contacts. Of the 

590 total participants across 117 housing clusters, 522 had network information available 

via weekly self-reported contact surveys, housing information, or course rosters. Individuals 

with no contact information were omitted from the analysis.

Different contact types may experience different intervention effects. For instance, since 

the eX-FLU intervention asks students with ILI to isolate in their dorm room, the effect of 

the intervention on roommates and non-roommates may differ. The analysis presented here 

considers the non-roommate and classmate (NC) network, defined by all self-reported or 

classmate contacts that were not between roommates. The NC network included n = 522 

participants from 115 clusters, with approximately nine contacts per week on average. The 

number of weekly contacts per individual ranged from zero to 46.

Since the primary results from the eX-FLU trial have not yet been published, the ILI 

outcome is not currently available for analysis. Therefore, ILI outcomes were simulated 

according to the transmission probability model in Section 2.4 based on the observed eX-

FLU NC network data. The parameter value θ = (0.30, 0.15, 0.01) was chosen to illustrate 

the methods in a scenario that demonstrated moderate power in Section 3. Figure 3 shows 

the NC network by simulated ILI status during the study period.

Figure 4 displays the observed values of the test statistics T1, T2, T3, and T4 along with 

the corresponding sampling distributions and p-values for each test based on 1000 randomly 

sampled a ∈ A. Test statistics T2 and T4 indicate strong evidence for an intervention effect 

(ρ < 0.01). Statistics T1 and T3 also suggest a possible intervention effect, although these 

p-values are larger. These results are consistent with the empirical finding in Section 3.2 that 

T2 and T4 tend to be more powerful than T1 and T3. Fitting the transmission probability 

model from Section 2.4 to the NC network yielded θ = (0.30, 0.16, 0.01). Thus the estimated 

intervention effect was δθ = − 0.14(95% CI − 0.18, − 0.10), close to the true value δθ = −0.15. 

These results demonstrate that the proposed methods can be used to detect and accurately 

quantify intervention effects in trials such as eX-FLU.

5. Discussion

Experiments conducted on social networks create an opportunity to study spillover effects. 

In such settings, RI methods are valid even in the presence of interference and non-random 

Alexandria et al. Page 10

Biometrics. Author manuscript; available in PMC 2023 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampling from a target population. In this article, RI methods were developed for analysis 

of the eX-FLU trial. Randomization tests were used to assess the null hypothesis of no 

intervention effect, and a stochastic potential outcomes transmission probability model 

was proposed to construct point estimates and confidence intervals of the magnitude of 

the intervention effect. The proposed methods allow for interference between individuals 

and do not assume constant treatment effects. While motivated by the eX-FLU trial, the 

transmission model may be tailored to other settings based on existing subject matter 

knowledge, such as information about latency periods or immunity for the disease pathogen 

of interest.

There are several other possible analyses of the eX-FLU trial. The study investigators 

collected additional contact information on a subset of participants via the iEpi smartphone 

application. The iEpi app uses Bluetooth location information to detect potential interactions 

between substudy participants. The app then sends prompts to the participants to collect 

information about the context surrounding the interaction. The contact information 

provided by iEpi is expected to be more accurate than the weekly self-reported contact 

questionnaires used in the above analysis. Future work may consider using iEpi contact 

information to improve inference about the eX-FLU intervention effect. Additionally, 

the transmission probability model considered here does not incorporate individual 

susceptibility characteristics, such as receipt of influenza vaccine or hand hygiene habits. 

Future research could incorporate individual-level covariates that may affect infection 

susceptibility. One such approach could entail randomization tests of residuals based on 

regression models of the outcome on baseline covariates under the null hypothesis of no 

treatment effect (Parhat et al., 2014). Often these residuals will have less variation than the 

outcomes, such that residual-based randomization tests can have greater power than tests 

that only utilize the outcome and ignore covariates (Rosenbaum, 2002b).

Randomization-based inference is appealing in that hypothesis testing is exact, i.e., type I 

error control is guaranteed. On the other hand, adequate statistical power is not guaranteed, 

and thus the choice of test statistic may be consequential. A test with lower power can fail 

to detect intervention effects when present, and if inverted can lead to large, uninformative 

confidence regions. Therefore it is important to select powerful test statistics in practice; as 

in Section 3.2, simulation studies based on the application at hand may inform test statistic 

selection (Bowers et al., 2013).

Likewise, the form of the stochastic potential outcome model assumed can also have a 

substantial impact on inferences drawn about a particular data set. Therefore in practice it 

is important to consider assessment of model fit and robustness of results to the assumed 

model. For certain test statistics, a randomization test can be viewed as simultaneously 

assessing the plausibility of both the null parameter value and the assumed model given the 

observed data (Bowers et al., 2016), and models which are mis-specified can result in empty 

confidence sets. In other words, the observed data may be incompatible with all possible 

parameter values of the assumed model; Loh et al. (2020) provide such an example when 

modeling the spillover effects of cholera vaccination. In such instances, empty confidence 

regions indicate lack of fit of the assumed model (Keele and Miratrix, 2019). See Bowers 
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et al. (2016) for additional considerations regarding goodness-of-fit tests in the context of 

interference and spillover effects.

As any model is an over-simplification to some extent, in practice considering multiple 

models may provide greater insight than inferences based on a single model (Rosenbaum, 

2020). For each model considered, the methods in this paper can be used to determine 

regions of the parameter space, if any, that are compatible with the observed data. In the 

context of randomized trials within social networks, this approach allows investigators to 

characterize plausible intervention effects across different assumed models.

Increasingly, public health interventions are being designed to impact more of the 

population than is intervened on directly. The continued development of causal methods 

for inference about spillover effects of interventions within networks are therefore important 

to understanding public health and policy implications of interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Details of confidence interval construction

The following procedure is used to conduct a stochastic search for the minimum and 

maximum δθ values in Cδ. For computational efficiency, the procedure (i) limits the number 

of null hypotheses tested and (ii) approximates each p-value by randomly sampling 100 

values of a from A. Determining the confidence interval endpoints entails two steps.

The first step involves finding the values of θ* that maximize and minimize the function 

V θ* = δθ* − δθ /[ ρT5 A, θ* − α 2 + ν], where ν is a small positive constant; for the results 

presented in this paper, ν = 0.0001. Intuitively, the value of θ* that maximizes V (θ*) will 

have the largest value of δθ* (such that the numerator of V (θ*) is large) among values of 

θ* where the corresponding p-value is close to α (such that the denominator of V (θ*) is 
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small). Likewise, the minimizer of V (θ*) will have the smallest value of δθ* among the 

set of θ* where the p-value is close to α. The nloptr non-linear optimizer function from 

the nloptr R package (Powell, 2006; Johnson, 2020) is used to search for the maximum 

and minimum of V (θ*) in two separate function calls. Each θ* and corresponding p-value 

ρT5 A, θ*  calculated during the optimization process via nloptr are retained; let S be the set of 

these θ* values.

In the second step, monotone splines are used to estimate the upper and lower bounds of 

Cδ. In particular, the upper bound of Cδ is estimated as follows. Using only values of θ* 

∈ S such that δθ* ≥ δθ, a monotonic decreasing spline is fit with predictor δθ* and outcome 

ρT5 A, θ*  using the scam function in the scam R package (Pya, 2020). Let fU(δ) be the fitted 

monotonic decreasing spline and define δU as the unique value of δ such that fU(δU) = α. 

Analogously, let fL(δ) be the monotonic increasing spline obtained using only values of θ* 

∈ S such that δθ* ≤ δθ, and let δL be the unique value of δ such that fL(δL) = α. The (1 − α) 

CI for δθ is then (δL, δU).

This procedure for estimating the CI endpoints is illustrated using a single data set in Web 

Figure 3.
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Figure 1: 
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Graphical representations of the eX-FLU randomization design. Each node represents one 

individual, and an edge between nodes indicates reported contact between individuals in at 

least one week of the study. Darker shades of each color represent cohort participants in the 

intervention group, and lighter shades represent participants in the control group. Figure (a) 

shows a random sample of 30% of the network edges in a layout where proximity between 

nodes is based on relative geographic location of participant residence halls, which were 

used as clusters for randomization of the intervention. Figure (b) shows 100% of network 

edges arranged in a layout that bases node proximity on frequency of reported contact 

using the igraph R package (Csardi and Nepusz, 2006). This figure appears in color in the 

electronic version of this article, and any mention of color refers to that version.
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Figure 2: 
Empirical power for test statistics T1, T2, T3, and T4 under the scale-free model with n = 

504, τ = 9, and 25 participants with ILI at baseline. Results are shown for ϵ = 0.01 and 

various combinations of p0 and p1. This figure appears in color in the electronic version of 

this article, and any mention of color refers to that version.

Alexandria et al. Page 18

Biometrics. Author manuscript; available in PMC 2023 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alexandria et al. Page 19

Biometrics. Author manuscript; available in PMC 2023 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Reported ILI in each of three weeks of the eX-FLU NC network. Nodes are colored red 

if the participant reported ILI during the specified week of the study period. This figure 

appears in color in the electronic version of this article, and any mention of color refers to 

that version.
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Figure 4: 
Sampling distribution and RI p-value (ρ) for test statistics T1, T2, T3, and T4 based on the 

NC network in the eX-FLU trial. The observed test statistic is indicated by the vertical 

dashed line.
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