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SUMMARY:

Studies of social networks provide unique opportunities to assess the causal effects of
interventions that may impact more of the population than just those intervened on directly. Such
effects are sometimes called peer or spillover effects, and may exist in the presence of interference,
i.e., when one individual’s treatment affects another individual’s outcome. Randomization-based
inference (R1) methods provide a theoretical basis for causal inference in randomized studies,
even in the presence of interference. In this article, we consider RI of the intervention effect

in the eX-FLU trial, a randomized study designed to assess the effect of a social distancing
intervention on influenza-like-illness transmission in a connected network of college students.
The approach considered enables inference about the effect of the social distancing intervention
on the per-contact probability of influenza-like-illness transmission in the observed network. The
methods allow for interference between connected individuals and for heterogeneous treatment
effects. The proposed methods are evaluated empirically via simulation studies, and then applied
to data from the eX-FLU trial.

Keywords

Causal inference; eX-FLU; Interference; Social distancing; Spillover effect; Stochastic potential
outcomes

1. Introduction

The novel coronavirus disease 2019 (COVID-19) can be spread through person-to-person
contacts (Paules et al., 2020). Social distancing after symptom onset has been shown to be
effective in preventing transmission of similar human coronavirus strains, including severe
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acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) (Peak et
al., 2017). Therefore, public health efforts to control the spread of COVID-19 have included
isolation of individuals who exhibit symptoms (Nussbaumer-Streit et al., 2020). Given that
individuals may be infectious before symptom onset and that isolation of one individual can
lower the chances of infection for everyone with whom that individual would have otherwise
had contact, how can the efficacy of social distancing interventions be measured?

This question is not unique to the study of coronavirus. Public health interventions are often
designed to disseminate benefits to more of the population than is treated directly (Clemens
etal., 2011; Klugman, 2014). This dissemination effect, called the spillover or peer effect,
is an important component of the population-level effect of an intervention (Clemens

etal., 2011; Halloran and Hudgens, 2012). Randomized trials conducted within social
networks can provide information about the spillover effect by randomly administering

the intervention to individuals within the network (Eckles et al., 2017). However, network-
based trials require careful consideration when drawing inference about the effects of the
intervention.

As a motivating example, consider the eX-FLU trial (Aiello et al., 2016), which followed
a sample of college students during influenza season to evaluate the efficacy of a social
distancing intervention for the prevention of influenza-like-illness (ILI) transmission.
Enrollment in the eX-FLU trial relied on respondent-driven sampling (RDS) to ensure the
study sample contained connected networks of individuals. A respondent-driven sample
is formed by a chain-referral procedure in which seed individuals are selected from the
target population and then provided with tokens to nominate other members of the target
population (Goel et al., 2010). This process continues until the desired sample size is
reached.

In general, RDS samples will be non-representative of the target population and will
exhibit dependence among individuals in the sample (Goel et al., 2010). This dependence
may introduce interference. Interference occurs if the intervention status of one person
affects another person’s outcome (Cox, 1958; Rosenbaum, 2007). Non-random sampling,
dependence, and interference all pose inferential challenges. For instance, large-sample
frequentist methods typically assume random sampling from the target population (i.e.,
observations are independent and identically distributed), and therefore would not generally
produce valid inference in settings such as the eX-FLU trial.

Many of the existing methods for causal inference in the presence of interference assume
either that interference is restricted to disjoint subgroups (Sobel, 2006; Hudgens and
Halloran, 2008; Tchetgen Tchetgen and VanderWeele, 2012) or that the network is a
random draw from the super-population (Liu et al., 2016; Ogburn et al., 2017; Ogburn and
Vanderweele, 2017; Forastiere et al., 2021; Tchetgen Tchetgen et al., 2021). In settings such
as the eX-FLU trial where such assumptions are dubious, randomization-based inference
(RI) provides a natural approach to assessing intervention effects (Aronow and Samii, 2017,
Athey and Imbens, 2017; Basse et al., 2019; Wu and Ding, 2020). Such an approach is
considered in this paper for analysis of the eX-FLU data. The proposed approach makes
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no asymptotic assumptions and allows for inference about the effect of intervention on ILI
transmission in the observed network.

The outline of the remainder of this paper is as follows. Section 2 provides additional details
about the eX-FLU trial and describes Rl methods for inference about the effect of a social
distancing intervention. The proposed approach allows for interference between connected
individuals and for heterogeneous treatment effects. Section 3 presents simulation studies
evaluating the methods under a variety of scenarios. Data from the eX-FLU trial is analyzed
in Section 4, and some concluding remarks are given in Section 5.

2. Methods

2.1 Introduction to the eX-FLU trial and notation

The eX-FLU trial was designed to study the efficacy of a three-day social distancing
intervention for prevention of ILI transmission in a network of students at a large university.
Social distancing (isolation) aims to reduce contact between individuals in an effort to limit
opportunities for disease transmission. The eX-FLU experiment followed the students over
a ten-week period during an influenza season to track ILI transmission (Aiello et al., 2016).
Of the 5536 eligible students, 590 of those identified through the RDS process elected to
participate in the trial. Upon meeting the case definition for ILI, a student in the intervention
group was encouraged to self-isolate in their dorm room for three days while receiving

food and services from the eX-FLU staff. ILI symptoms were self-reported and confirmed
with laboratory testing for influenza and other respiratory illnesses (Aiello et al., 2016). The
eX-FLU study design is detailed below and notation is defined generally for any study of
similar design.

Consider an experiment such as eX-FLU, conducted on 7 individuals who formed a network
of face-to-face social contacts. In the following, random variables are denoted by uppercase
letters and fixed quantities are denoted by lowercase letters. Suppose individuals were
randomly assigned to intervention or control at baseline (i.e., the beginning of the trial).
Assume the randomization assignment did not depend on the social network structure, risk
of developing ILI, or any other individual characteristics. For /€ {1, ..., r1}, let A;equal

1 if individual 7was assigned to the intervention group and 0 if individual /was assigned

to the control condition. Let A = (A4, ..., A,) represent the vector of observed intervention
assignments. Let o denote the set of all possible intervention assignment vectors a =

(a1, ..., ay) given the randomization design. For example, eX-FLU employed a cluster
randomized design, in which clusters (or groups) of students were defined by subdivisions
of student residence halls, and each cluster of individuals was randomly assigned to the
intervention or control condition. By design, exactly /m of the / clusters were assigned to the
intervention, such that & is composed of the (Z) possible assignment vectors where a;= a;
for all individuals 7and jin the same cluster. For simplicity, assume each assignment in &
occurs with equal probability, although this assumption can easily be relaxed. For eX-FLU,

-1
P(A=a)=( ) forallae «.
m
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Suppose the study participants were then followed for z discrete time points. During
followup, information was collected on a binary outcome of interest, e.g., ILI status. Let
Yjrdenote the observed outcome for individual 7at time ¢€ {1, ..., z}. Further, let Y ;=
(Yip ---, Yn) be the observed outcomes for all 7 individuals at time £ In some studies, the
outcome may be collected at baseline. Denote the baseline outcome for individual /by yj.
In eX-FLU, 25 individuals had ILI at baseline (13 cases in the intervention group).

The eX-FLU intervention was not intended to prevent ILI in the person assigned to the
intervention; instead, this study investigated the spillover effect of social distancing on
at-risk peers. Therefore, information on social contacts between study participants was also
collected at each of the ztime points. Self-reported contact information was collected for
each individual via weekly questionnaires, and additional contact information was collected
through residence hall and course rosters. In the analysis presented below, individuals /and
J are considered contacts at time £ denoted by binary indicator ej; = 1, if either individuals
/or j(or both) had contact during weeks #1 or £ otherwise e;;= 0. Contacts are assumed
to be symmetric (i.e., €= ¢j;for all /, j, §) and by convention e;;;= 0 for all /and ¢

The eX-FLU social contact network is represented graphically in Figure 1, where an edge
between two nodes indicates that the two individuals reported contact in at least one week of
the study, i.e., maXeqo, ..., €j= 1 for individuals 7and /.

.....

2.2 Potential outcomes with interference

Effects of the intervention can be represented by comparisons of potential outcomes
(Neyman, 1923; Rubin, 2005). Let y;{a) denote the potential outcome that would have

been observed for person 7at time ¢if, possibly counter to fact, assignment a had been
chosen. To begin, potential outcomes are assumed to be fixed, i.e., deterministic functions of
a. In Section 2.4 below, this assumption will be relaxed by allowing potential outcomes to
be stochastic. Note that the notation y;{a) allows for interference to be completely general,
i.e., the outcome of individual /may depend on the intervention assignment of any other

individual. Therefore, in eX-FLU each individual has (h) potential outcomes. By the causal
m

consistency assumption (Cole and Frangakis, 2009), one of these potential outcomes y;j{A)
= Yj;is observed and the remaining become counterfactual.

Inference about intervention effects generally requires some assumptions about the
structure of the interference (Sévje et al., 2021). The commonly employed Stable Unit
Treatment Value Assumption (SUTVA) supposes that there is no interference between units
(Rubin, 1980). In the presence of interference, SUTVA is violated and other assumptions
about the interference structure are needed for valid inference. The partial interference
assumption posits that individuals can be partitioned into clusters such that there is no
interference between clusters (Sobel, 2006). Even though individuals in the eX-FLU sample
were assigned to intervention via cluster randomization, self-reported contacts between
participants from different clusters suggests the partial interference assumption likely does
not hold for this trial. Instead, the methods below rely on a weaker assumption that allows
interference to occur between any two individuals who recently had contact. Specifically,
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it is only assumed that there is not interference between individuals who have not had any
recent contact.

2.3 Randomization-based tests

Randomization-based tests permit inference about experiments based on the exact (i.e.,
finite sample) distribution of a given test statistic under a specific hypothesis about the
intervention effect (Rosenbaum, 2002a; Rosenberger et al., 2019). An RI test entails a null
hypothesis Hp, a test statistic 7{a), and a method for determining the distribution of the test
statistic under Hp. In addition to being a function of the randomization vector a, the test
statistic 7(a) is also a function of the observed data, which is left implicit for notational
simplicity. The RI tests in this section consider the sharp null hypothesis of no intervention
effect given by Hy : vi{a) — y;{a’) =0 forall /€ {1, ..., i} and a,a’ € o (Fisher, 1935).
Rejecting this null hypothesis suggests that there is some intervention effect for at least one
individual in the sample. Under Hp, yi{a) = Y for all a € &, which allows all unobserved
potential outcomes yj{a) to be inferred from the observed data. The sharp null hypothesis is
assessed by comparing the test statistic for the observed assignment, 7{A), to the distribution
of test statistics for all possible treatment assignments under hypothesis Hp. Assuming
values of the test statistic far from zero provide evidence against the null hypothesis, the
two-sided p-value, p(A) = ¥, ., I(IT(A) < IT(a)l)/ 1), is the proportion of the sampling
distribution that is as or more extreme than the observed test statistic, where /) is the
indicator function and for notational convenience | - | denotes either the absolute value of a
number or the cardinality of a set. In settings where enumerating all possible elements of &
is computationally prohibitive, Monte Carlo sampling can be used to approximate p-values
(Rosenberger et al., 2019; Wang and Rosenberger, 2020; Wang et al., 2020).

An RI test can assess the presence of an intervention effect without any structural
assumptions about the effect. Different possible test statistics are considered below. For
example, the test statistic may equal an estimator of the average intervention effect under
some working model. However, the validity of the RI framework for hypothesis testing
does not rely on correct specification of the working model; that is, type I error control is
guaranteed under the null even if the working model is mis-specified (Loh et al., 2020).

For instance, the test statistic could be based on the maximum likelihood estimator (MLE)
of the parameters of a logistic regression model. One such working model is logit{ £{ Y;)} =
BotBu(Z) € -1ANZ € 1), Tor t€ {1, ..., z}. The parameter S, in this model quantifies
the effect on the outcome at time ¢ of the proportion of contacts at #— 1 assigned to the
intervention. In the eX-FLU trial, ILI status of peers at the previous time point is likely

a relevant component of the intervention effect. Thus, another possible working model is
logit{ & Yid} = yo+ 1) €1 Yj-1AME) €jj -1 Y1), where yq quantifies the effect of
contacts with ILI being assigned to the intervention. These models can be used to calculate
the Wald test statistics T,(A) = j,/se;, and T»(A) = 7,/se;,, where g, and 7, are the MLEs of 8;

and y1 respectively under the working logit model, se;, is the estimated standard error of 3,
using the observed information, and se;, is defined analogously. In their respective models,
B1and y are zero if there is no effect.
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The test statistic could also be based on an estimator for the average difference in the
number of ILI infections that could be attributed to individuals in the intervention and
control groups. Let Wj= (2 ;YD AZ; ej) be the proportion of person 7's contacts at time
twho have ILI. The average difference in these proportions by intervention assignment is
T3(A) = (5 WiAME e AY~{5e Wik1-ADMAZ; A1-A)}, where T denotes /.., 7_,
An analogous test statistic that accounts for which individuals reported ILI at the previous
time point is 7a(A) = (¢ WA Y -1)AZ)e A Y1) = {0 Wikl = A) Y -1 3AZ; 4L

= A)) Yj+1}- Since statistics 73 and 73 use information from all participants, regardless
of ILI status, these statistics may capture transmission from asymptomatic or unreported
cases. However, asymptomatic individuals in the intervention group were not encouraged
to socially distance themselves, suggesting 71 and 73 may have diminished power. On the
other hand, statistics 7, and 74 utilize information from ILI cases to measure the effect of
the intervention in contacts of individuals known to have ILI.

For longitudinal studies, the intervention effect can be assessed by considering all available
time points simultaneously, as in the test statistics above. Alternatively, a pairwise analysis
may be conducted that separately investigates each pair of consecutive time points. A
pairwise approach may be preferred if the intervention effect changes over time. While the
test statistics defined above incorporate information from all ztime points, analogous test
statistics can be defined for a pairwise analysis.

2.4 Stochastic potential outcomes model

Randomization tests of the sharp null hypothesis provide information about the presence of
an intervention effect, but do not provide information about the magnitude of such an effect.
Point estimates and confidence intervals (Cls) of the intervention effect may also be desired.
In the absence of interference, a common approach to constructing Cls entails inverting
randomization tests. This approach typically relies on a constant treatment effect assumption
(Wang and Rosenberger, 2020). For example, if each individual has two potential outcomes
yA0) and y{(1), then the additive treatment effect assumption supposes y{0) = y{(1)+z for all
fand some fixed constant z. Unfortunately, such treatment effect homogeneity assumptions
are often unrealistic in many settings, especially when the outcome is binary and in the
presence of interference (Rosenbaum, 2002a; Rigdon and Hudgens, 2015). Therefore, in this
section, a stochastic potential outcomes model is considered that allows for heterogeneous
treatment effects without assuming a constant treatment effect. Such a model will be used

in the eX-FLU analysis in Section 4 to construct point estimates and Cls of the effect of the
intervention on the risk of ILI transmission between social contacts.

Unlike the deterministic potential outcome model in Sections 2.2 and 2.3, here potential
outcomes are considered stochastic (Robins, 1988; Robins and Greenland, 1989). In
particular, the potential outcome for individual 7at time #for assignment vector a may
now vary probabilistically and is denoted by the random variable Yj{a), which may follow
a distribution specific to each individual at each time point. Motivated by the eX-FLU trial,
these stochastic potential outcomes are assumed to follow an ILI transmission probability
model described below. The intervention effect is quantified by the model parameters, and
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RI tests of non-sharp null hypotheses about the parameters are utilized to construct point
estimates and Cls for the effect.

The stochastic potential outcome model is parameterized by ILI transmission probabilities
from sources inside and outside of the observed network. Let p; denote the per-contact
probability of ILI transmission from an individual assigned to the social distancing
intervention to another individual. Similarly, define gy as the per-contact transmission
probability from an individual not assigned to the intervention. Additionally, let e represent
the probability of transmission from outside of the observed network at each time point. The
inclusion of e in the model allows for the possibility that some eX-FLU participants may
have been infected from individuals outside of the observed study network. Let 8= (g, p,
€) with corresponding parameter space ® = {8: (1, p1, €) € [0, 1]3}.

The transmission probability model can be tailored to the study design and subject matter
knowledge. For instance, the model can incorporate dynamics specific to transmission of the
outcome under study, such as pathogen-specific latency or infectious periods. Since ILI is
caused by multiple viruses rather than a single pathogen, the transmission probability model
used in the eX-FLU analysis assumes that individuals remain susceptible to ILI even after
previous infections. Therefore, individuals with ILI at week #— 1 are considered eligible to
get ILI anew in week £ In settings in which infection is known to confer immunity for some
period of time, changes in susceptibility could be encoded into the model. Additionally,
transmission is assumed to occur only between direct contacts.

The per-contact probability of transmission depends on multiple factors, including the social
contact network, ILI status, and intervention assignment. Let Bjj;be the (unobserved)
indicator of whether person /7 develops ILI at time #as a result of contact with person .
Assume ABjj;=1) = rrji{a) where rji{a) = Yjr1(a)€j~1{a1 +(1-a)po}- Note that if
individual s does not have ILI or individuals 7and fare not social contacts at time #1, then
the probability that person jtransmits ILI to person 7is zero. Let O;;be the (unobserved)
indicator that person 7is infected from an individual outside of the observed network at time
t such that AO;=1) = e

Only one individual needs to successfully transmit ILI to individual /for person /to
become infected, implying Yj{a) = max{Buy ..., Bjns Oj3. Assume Bj..., Biprand Ojsare
mutually independent given the outcomes at the previous time point, such that

P{Yn(a) = 1 | YL,,](a), "'7Yn.1—l(a)} = il(a)’ (1)

where r,(a)=1-(1-¢e)[]}-.{1 — m,(a)}. Then the parameters @ can be estimated by
maximum likelihood estimation, using the log likelihood function

T

10 = Y| Y Yilog{r(A)} + (1 = Y,)log{1 - r(A)} , @
t=1li=1
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under the Markov-type assumption that Y ;L {Y £, ..., Y1}|Y =1 forall 1€ {3, ..., t}. The
MLE of 8does not appear to have a closed form, and therefore numerical optimization is
used to find estimates 6 = (p,, p,, ¢) that maximize (2).

Confidence regions for @ may be constructed by inverting an RI test of Hy: 6=

6* for 6* = (p,, p,. €*) € ©. The probability model parameters can be utilized in a test
statistic that includes information from observed data as well as the hypothesis under
consideration, such as Ts(a, 6*) = |6 — 9*||§ where II-ll; denotes the Euclidean norm. Since
this Hp is not a sharp hypothesis due to the randomness of the potential outcomes, the
sampling distribution of the test statistic can no longer be constructed through enumeration
for each a € . Instead, the sampling distribution is approximated as follows. First, a
random sample of intervention assignments a is drawn from «; denote this sample «..
Then for each a € «,, longitudinal IL1 outcomes are stochastically generated according

to (1) under the null Hy : 6= 6, and the test statistic 75 is evaluated. Then, the

p-value p. (A, 0%) = Y., I{T5(A, 0%) < Ts(a, 0*)}/|</,| is computed. Repeating this hypothesis
testing process for all values of 6% € B, a (1 — a) confidence region for @is then

G, = (0% € O: pr(A, 6%) > al.

The intervention effect can be defined by a contrast of transmission probabilities; the per-
contact risk difference 6g= 1 — f is the focus below. A point estimate for g based on
the MLE for @is &, = p, — p,, and a (1 — a) confidence region for 5gis &, = {6,-:0% € E,}.
The minimum and maximum values of &, form a (1 — a) CI for §g. Determining the
endpoints of this ClI may be computationally challenging in practice. A computationally
efficient stochastic search procedure for approximating the CI endpoints is described in the
Appendix.

3. Empirical Results

3.1 Simulation study

The RI inferential methods presented above were evaluated via simulations designed to
emulate the eX-FLU trial. Baseline networks were simulated with two different network
models: an exponential random graph model (ERGM), and a scale-free model that allows
for highly connected individuals or super-spreaders (Keeling and Eames, 2005). Simulation
results from each model are provided separately below. To generate temporal variation in the
network, one percent of contacts at time #1 were randomly chosen to be non-contacts at
time ¢ and one percent of non-contacts at time #1 were randomly chosen to be contacts at
time tfor t€ {1, ..., t}.

To emulate the cluster randomization design of eX-FLU, each of 7= 504 individuals
was assigned to one of /7= 112 clusters with roughly equal numbers of individuals per
cluster. The intervention was assigned to /m = 56 of these / clusters, resulting in a total

112 I . . . .
of ( s6 ) ~ 4 x 10°? possible intervention assignments. Baseline ILI status, ¥, was assigned

such that 25 of the 77 individuals had ILI at time 0. Outcomes were sequentially generated
according to (1), i.e., Yjfor7i€ {1, ..., nyand t€ {1, ..., 7} was sampled from a Bernoulli
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distribution with mean rj{A). Power of hypothesis tests, coverage of Cls, and bias of point
estimates were computed for data simulated under various combinations of g, pr, and e

R code for these simulations is available at github.com/shaina-alexandria/netrix.

3.2 Power of Rl tests

The test statistics from Section 2.3 were evaluated empirically for power to detect the
intervention effect &4 for values of &in a region of ® considered plausible for the eX-FLU
trial. For each value of 6, 500 data sets were simulated. The power of each test was
approximated by the proportion of datasets where the RI test p-values were less than or
equal to a = 0.05. For each hypothesis test, the sampling distributions of the test statistics
were approximated via 1000 randomly chosen a € «/.

Power results are shown in Figure 2 for the scale-free model and different values of 6. The
ERGM network power results were similar, and are provided in Web Figure 1. Statistics 75
and 74 were more powerful than 7; and 73, demonstrating that contacts without ILI at the
previous time period were not informative about the intervention effect. Test statistics 7, and
71 also tended to be more powerful than 74 and 73, respectively, suggesting that utilizing a
working logistic model may be preferable for assessing intervention effects in settings such
as eX-FLU. All four statistics demonstrate type 1 error control, as is guaranteed by RI.

On the other hand, type 1 error control would not be expected in this setting if instead
standard methods were employed that assume the observations are independently and
identically distributed. To illustrate, the scale-free model simulations described above were
repeated under the null hypothesis 6= 0. For each simulated data set, whether to reject
the null was determined by naively assuming the Wald statistics 7; and 7, follow standard
Normal distributions. The results in Web Table 1 show that such a naive approach does

not control the type 1 error, unlike the RI tests. Similar results were obtained when the
simulations above were repeated using an ERGM network; see Web Table 2.

3.3 Coverage of confidence regions and bias

For the transmission probability model in Section 2.4, simulations were conducted to
evaluate coverage of the 95% confidence regions for @and confidence intervals for &g
under various combinations of the true data generating parameter 6. Separate simulations
were conducted for each of the two network generation models. Confidence regions for 6
were evaluated over a broad range of values in ® to assess coverage for both plausible
and extreme values of 6. Results for the ERGM network model in Web Figure 2 show the
empirical coverage was generally close to the nominal level over the range of parameter
values considered; results (not shown) for the scale-free model were similar.

Empirical coverage of the Cl for §gand bias of the estimator 5; were also evaluated for
values of & considered plausible in the eX-FLU trial. Separate simulation studies were
conducted for the two network models. Power of the randomization test using statistic 75
to reject the hypothesis Hy : 9= 0 was also evaluated. Results are presented in Web Table
3. For the scale-free model, the 95% Cls tended to have at least nominal coverage and &;
had small empirical bias. The test statistic 75 had moderate power for & values with larger
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|6¢l and controlled type 1 error, although power decreased as e increased. Results from the
ERGM model were similar.

4. The Spillover Effect of Social Distancing

In this section, data from the eX-FLU study is used to illustrate how the methods presented
above can be used to draw inference about the effect of the social distancing intervention

in the observed network of students. Baseline ILI information was collected in the initial
week of the study, after randomization but before the intervention could plausibly spillover
to others. Over the ten-week study period (z=9), the eX-FLU trial captured three types

of social contacts. Housing rosters provided roommate information, course rosters provided
classmate information, and weekly questionnaires recorded self-reported contacts. Of the
590 total participants across 117 housing clusters, 522 had network information available
via weekly self-reported contact surveys, housing information, or course rosters. Individuals
with no contact information were omitted from the analysis.

Different contact types may experience different intervention effects. For instance, since
the eX-FLU intervention asks students with IL1 to isolate in their dorm room, the effect of
the intervention on roommates and non-roommates may differ. The analysis presented here
considers the non-roommate and classmate (NC) network, defined by all self-reported or
classmate contacts that were not between roommates. The NC network included 7= 522
participants from 115 clusters, with approximately nine contacts per week on average. The
number of weekly contacts per individual ranged from zero to 46.

Since the primary results from the eX-FLU trial have not yet been published, the ILI
outcome is not currently available for analysis. Therefore, ILI outcomes were simulated
according to the transmission probability model in Section 2.4 based on the observed eX-
FLU NC network data. The parameter value 6= (0.30, 0.15, 0.01) was chosen to illustrate
the methods in a scenario that demonstrated moderate power in Section 3. Figure 3 shows
the NC network by simulated ILI status during the study period.

Figure 4 displays the observed values of the test statistics 77, 7», 73, and 74 along with

the corresponding sampling distributions and p-values for each test based on 1000 randomly
sampled a € o. Test statistics 7, and 7 indicate strong evidence for an intervention effect
(0 <0.01). Statistics 7; and 73 also suggest a possible intervention effect, although these
p-values are larger. These results are consistent with the empirical finding in Section 3.2 that
7> and 7 tend to be more powerful than 7; and 73. Fitting the transmission probability
model from Section 2.4 to the NC network yielded 8 = (0.30,0.16,0.01). Thus the estimated
intervention effect was 6, = — 0.14(95% CI — 0.18, — 0.10), close to the true value §g=—0.15.
These results demonstrate that the proposed methods can be used to detect and accurately
quantify intervention effects in trials such as eX-FLU.

5. Discussion

Experiments conducted on social networks create an opportunity to study spillover effects.
In such settings, Rl methods are valid even in the presence of interference and non-random
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sampling from a target population. In this article, RI methods were developed for analysis
of the eX-FLU trial. Randomization tests were used to assess the null hypothesis of no
intervention effect, and a stochastic potential outcomes transmission probability model

was proposed to construct point estimates and confidence intervals of the magnitude of

the intervention effect. The proposed methods allow for interference between individuals
and do not assume constant treatment effects. While motivated by the eX-FLU trial, the
transmission model may be tailored to other settings based on existing subject matter
knowledge, such as information about latency periods or immunity for the disease pathogen
of interest.

There are several other possible analyses of the eX-FLU trial. The study investigators
collected additional contact information on a subset of participants via the iEpi smartphone
application. The iEpi app uses Bluetooth location information to detect potential interactions
between substudy participants. The app then sends prompts to the participants to collect
information about the context surrounding the interaction. The contact information
provided by iEpi is expected to be more accurate than the weekly self-reported contact
questionnaires used in the above analysis. Future work may consider using iEpi contact
information to improve inference about the eX-FLU intervention effect. Additionally,

the transmission probability model considered here does not incorporate individual
susceptibility characteristics, such as receipt of influenza vaccine or hand hygiene habits.
Future research could incorporate individual-level covariates that may affect infection
susceptibility. One such approach could entail randomization tests of residuals based on
regression models of the outcome on baseline covariates under the null hypothesis of no
treatment effect (Parhat et al., 2014). Often these residuals will have less variation than the
outcomes, such that residual-based randomization tests can have greater power than tests
that only utilize the outcome and ignore covariates (Rosenbaum, 2002b).

Randomization-based inference is appealing in that hypothesis testing is exact, i.e., type |
error control is guaranteed. On the other hand, adequate statistical power is not guaranteed,
and thus the choice of test statistic may be consequential. A test with lower power can fail
to detect intervention effects when present, and if inverted can lead to large, uninformative
confidence regions. Therefore it is important to select powerful test statistics in practice; as
in Section 3.2, simulation studies based on the application at hand may inform test statistic
selection (Bowers et al., 2013).

Likewise, the form of the stochastic potential outcome model assumed can also have a
substantial impact on inferences drawn about a particular data set. Therefore in practice it

is important to consider assessment of model fit and robustness of results to the assumed
model. For certain test statistics, a randomization test can be viewed as simultaneously
assessing the plausibility of both the null parameter value and the assumed model given the
observed data (Bowers et al., 2016), and models which are mis-specified can result in empty
confidence sets. In other words, the observed data may be incompatible with all possible
parameter values of the assumed model; Loh et al. (2020) provide such an example when
modeling the spillover effects of cholera vaccination. In such instances, empty confidence
regions indicate lack of fit of the assumed model (Keele and Miratrix, 2019). See Bowers
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et al. (2016) for additional considerations regarding goodness-of-fit tests in the context of
interference and spillover effects.

As any model is an over-simplification to some extent, in practice considering multiple
models may provide greater insight than inferences based on a single model (Rosenbaum,
2020). For each model considered, the methods in this paper can be used to determine
regions of the parameter space, if any, that are compatible with the observed data. In the
context of randomized trials within social networks, this approach allows investigators to
characterize plausible intervention effects across different assumed models.

Increasingly, public health interventions are being designed to impact more of the
population than is intervened on directly. The continued development of causal methods

for inference about spillover effects of interventions within networks are therefore important
to understanding public health and policy implications of interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Details of confidence interval construction

The following procedure is used to conduct a stochastic search for the minimum and
maximum &g values in &;. For computational efficiency, the procedure (i) limits the number
of null hypotheses tested and (ii) approximates each p-value by randomly sampling 100
values of a from «. Determining the confidence interval endpoints entails two steps.

The first step involves finding the values of &* that maximize and minimize the function
V(6%) = (80 — &)/ [{ prs(A, %) — a}2 +v], where vis a small positive constant; for the results
presented in this paper, v = 0.0001. Intuitively, the value of &* that maximizes V(&) will
have the largest value of &, (such that the numerator of V/(&*) is large) among values of
&~ where the corresponding p-value is close to a (such that the denominator of V(&%) is
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small). Likewise, the minimizer of V/(6*) will have the smallest value of §,. among the

set of &~ where the p-value is close to a. The nloptr non-linear optimizer function from

the nloptr R package (Powell, 2006; Johnson, 2020) is used to search for the maximum

and minimum of V/(6*) in two separate function calls. Each &* and corresponding p-value
pry(A, 6*) calculated during the optimization process via nloptr are retained; let Sbe the set of

these & values.

In the second step, monotone splines are used to estimate the upper and lower bounds of
%, In particular, the upper bound of &; is estimated as follows. Using only values of 6*

€ Ssuch that s,. > 8, a monotonic decreasing spline is fit with predictor §,. and outcome
pry(A, 6%) using the scam function in the scam R package (Pya, 2020). Let 7;(6) be the fitted
monotonic decreasing spline and define &, as the unique value of &such that 7 (&) = a.
Analogously, let £;(6) be the monotonic increasing spline obtained using only values of 6*
€ Ssuch that 6, < &, and let &; be the unique value of 6 such that 7;(6;) = a. The (1 - a)
Cl for 8gis then (6., 6y).

This procedure for estimating the CI endpoints is illustrated using a single data set in Web
Figure 3.
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Graphical representations of the eX-FLU randomization design. Each node represents one
individual, and an edge between nodes indicates reported contact between individuals in at
least one week of the study. Darker shades of each color represent cohort participants in the
intervention group, and lighter shades represent participants in the control group. Figure (a)
shows a random sample of 30% of the network edges in a layout where proximity between
nodes is based on relative geographic location of participant residence halls, which were
used as clusters for randomization of the intervention. Figure (b) shows 100% of network
edges arranged in a layout that bases node proximity on frequency of reported contact
using the igraph R package (Csardi and Nepusz, 2006). This figure appears in color in the
electronic version of this article, and any mention of color refers to that version.
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Figure 2:
Empirical power for test statistics 71, 75, 73, and 74 under the scale-free model with 7=

504, £=9, and 25 participants with ILI at baseline. Results are shown for e = 0.01 and
various combinations of gy and py. This figure appears in color in the electronic version of
this article, and any mention of color refers to that version.
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Figure 3:
Reported ILI in each of three weeks of the eX-FLU NC network. Nodes are colored red

if the participant reported ILI during the specified week of the study period. This figure
appears in color in the electronic version of this article, and any mention of color refers to
that version.
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Figure 4
Sampling distribution and RI p-value (p) for test statistics 73, 7,, 73, and 74 based on the

NC network in the eX-FLU trial. The observed test statistic is indicated by the vertical
dashed line.
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